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ABSTRACT

A finite element analysis was made of crack growth in a
center-cracked specimen subjected to monotonically increasing
load until the point of fast fracture. Since part of the
specimen experienced unloading, the boundary value problem
which was formulated was based upon incremental theory of
plasticity. Experimental load and crack-size records were
utilized. Linear relations between plastic energy and crack
growth were observed. Fracture toughness parameters 6c’ which
were evaluated at the onset of unstable crack propagation, ob-
tained from finite element analysis were in good agreement

with those determined experimentally.




l. Introduction

Lincar eclastic fracture mechanics is widely used by research
workers and engincers as a tool to determine fracture toughness,
K. or CC, for cvaluating the susceptibility of engineering
materials to uanstable fracturc. Since ductile materials have
higher resistance to crack growth than brittle materials, the
rccent trend is to develop more ductile materials for structural
applications. However, ductile materials show a considerable
amount of crack-tip plasticity and significant amount of crack
growth prior to the onsct of unstable fracture.

A plastic zone correction [1,2], the J-integral [3,4] and
COD mcthods [S5] have been proposcd to trcat fracture involving
crack-tip plasticity in the abscence of crack growth. Further,
the crack growth resistance curve methed -[6] has been proposed
for cascs having subcritical crack growth. Liebowitz and
Lftis [7,8] introduced the nonlincar energy mcthod which is
applicable to semibrittle fracture. Jones et al [9] developed
a corresponding experimental program to determine the toughness
parameter CC and Licbowitz et al [10] provided theoretical
and cxperimental comparisons between their nonlinear energy
method and other existing methods. Recently Jonus.et al [11)
uscd four cmpirical mcthods to determine CC in the range of
crack growth.

In this work, a finite element analysis is developed for

crack growth problems based upon incremental theory of plasticity.
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In this paper, meation is made of the work of Newman [12] whose |
|
crack growth criterion is based on crack-tip strain with element- |
mesh size being a parameter, and that of de Koning [13] who i
found crack tip opening angle as constant during the process of |
crack growth. In this analysis, the rcalistic experimental _—
curve relating load and crack size is taken as an input. In |
order to demonstrate the validity of this work, the numerical |
output of load and displaccement is compared to its experimental
counterpart.  Morcover, a lincar relation is observed between

plastic cnergy and crack size during the process of crack

growth. The finitc-clement valucs of éc’ based upon empirical |
methods derived by Jones ct al [11], arc in good agreement

with the experimental values.
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2. Stress-Strain Relations

In lincar elasticity, the stress-strain relations for a
homogencous isotropic material can be written in either of the

following forms [14]:

T Aok éij + 2y Eg3 @ £2.1)
PRIE T SRR, R PR T (2.2)
i AT 2ul3k * ) kk iy ? ”
where 2 and p are the Lame constants, 0ij and Cij are the
stress tensor and strain tensor respectively. Introducing
stress deviator S as follows:
Sy = Oy = LS o Oiers (2.3)
e § SRR & > kk i} ° .
(2.2) can be rewritten as:
Biyx = ) S u) 8, ¢ Enl¥og . 8 (2.4)
*13 ij 3 kk %1 * :

where I and v are Young's modulus and Poisson's ratio respec-
tively.

In nonlincar clasticity, adopting the model suggested by
Ramberg and Osgood, we gencralize the stress-strain relations
as follows:

I .« Iy n-1
Bimgel S. ‘ Eia
e ij, £2.%)

+

9]
=
Q
w

heij = (1 + v) Sij + 5 Ok

where the cffective stress 0o is defined as:

7.}
s 2 "i3 %y (2.6)
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In simplc tension test, namely, all stress components are zero
except Uy = 0, we obtain thc following nonvanishing components

of Lij, Sij and the cffective stress:

n
Ecll ® @ + 0o,

. g
LCZZ = LCSS - e VO an,
2
o ¥ e i (2. 73
" e
Say V. Fen WURR
. = g
(&

For the theory of incremental plasticity, a certain portion of

the material is said to be in an unloading situation if its current
cl{fective stress 9, is less than the maximum effective stress

o: it experienced before, otherwise it is said to be in a loading
situation. The reclations between incremental stresses and in-
cremental strains in the loading situation can bc derived from

cqn. (2.5) as follows:

Bde. . & (lew) dn,, » LeptX du . @
ke i 3 kk "ij
3 n-1 N n-3
* 5 a0, dbij b u(n-l)oe Sij Sk1 dskl « (248)

In the unloading situation, we assume the incremental stress-
strain rclations arc the same as those in linear elasticity,
)

Ldey; = (1+v)ds; + 1——3——2 do

ij 83 » (2.9)

kk "1ij
The stress-strain rclation in the case of simple tension is

illustrated graphically in Fig. 1. 1In the case of generalized
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plane stress,

form:

where

and

8

Equivalently,

where matrix |

of unloading,

cqn. (2.8) may be written i the fpllowing matrizx

hll h12 h13 dox
= hy, hyy hyg do_ |,
h13 h23 h33 do

]

{1 + g + h(20x—oy)2}/E y

= (- v - g/2 + h(Zox-oy)(Zoy-ox)}/ﬁ
= 6h(20x-oy)ox {E ,
= {f *+ g & hi2 o 4, ) }/L ;
= bh(Zo,-o )c /E 2
= {2(1l+v) + 3g + 306h o, WE
n-1 n-3
ao ; = a(n-l)oc /4

eqn. (2.10) can be cxpressed as

diz d;3
daz 433
dyz dsg

d. ) is the inverse of matrix [h

we have

J

(2.10)

(2.11)

In the case
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3. 'Strain Energy

In the case of a simple tension test, if the specimen is
first loaded monotonically from o = 0 to o = o* and then un-
loaded monotonically from o = o* to ¢ = 0, we obtain the follow-

ing strain componecnts:

ot 0
€11 Z € °© de:ll + f dsll
0 s he
? -
F 1 n-1 0 1
: = f —E.-[l + ano Jdo + f Edc
0 o
b 1 n-1
= E{[l + ao* Jo* - o*}
4
’ ] n
= -E'G-U* ’ (3.1)
P o 0
Bap Mitap et f Repa 4=ps
L 0 o*
‘ %
e n-1 0
" 1 1 e R
= E[- vV - 5ang Jdo + £ d
| 0 o*
3
4 g
'l - = - 7(10* /L (3‘2)
{ ‘, Note that, in evaluating the first and second integral of eqns.
)
;: (3.1-3.2), the general incremental stress-strain relations (2.8)
- A
; and (2.9) arc utilized respectively. €11 = € and €yp = €33 = €
¢
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so obtained .n eqns. (3.1-3.2) are called plastic strains which
are the residuals after the applied load is removed. Comparing
eqns, (3.1-3.2) with eqn. (2.7)l and eqn. (2.7)2, we may rewrite 4

eqn. (2.5) as

By, (3.3)

Ee.. = E(eS. + €P.
ij ij

1)

where the elastic strains egj and plastic strains ng are

.. € = 1 1-2v
Lcij Clisnls o 3 Ok 511 -

= o ‘
e . |
Lgij 500 bij .

Now suppose, in a general case, the loading and unloading
history of a certain portion of the material can be divided into
two stages. In the first stage the effective stress Oa increases
monotonically to og which corresponds to ofj and in the second
stage the effect stress decreases monotonically to ge which corre-

sponds to Ti5 Then the strain encrgy density ¢ can be obtained as:
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we notice the strain energy density can be separated into two

parts:
T LR T (3.5)
e ) S 9e 6 Okk y :
> n £N+1 3.6
® = E(n+1) “% 4 kol




where the elastic strain cnergy density ¢e is a function of the
current stresscs ;ij and the plastic strain cnergy density ¢p
is a function of maximum c{fective stress og ! The irrever-
sible and dissipative naturce of plastic strain energy density
is indicated in eqn. (3.6). In two dimensional problems, the elastic-
and plastic-strain cnergy per unit thickness over an area A

can be obtained as:

U, 2 f oo dA, (379
A .

Up g f «bp dA . (3.8)
A




—

. SRS

4. Center-Cracked Specimen

In this work, we focus our attention on a rectangular
plate of length 22, width 2w, and thickness B, with a centered
line crack of initial crack size 2a subjected to symmetric
boundary conditions (cf. Fig. 2). Therefore only the first
quadrant of the plate R = [x,y[0 < x < w, 0 <y < 2] needs to
be analyzed. Experimentally one may obtain a curve of applied
stress ¢ vs crack size. A realistic experimental curve relating
o and a is shown in Fig. 3. We are interested in the investiga-
tion of the process that crack size slowly increases from a = ag
to a = a. as the applied stress increases from ¢ = 0 to o = O~
Supposc we have two adjacent states: g = 0(1) and a = a(l) at

State 1, o = 0(2) and a = a(z) at State 2. Correspondingly,

the boundary conditions may be specified as (cf. Fig. 4):

o, = ko(l), oxy = 0 on S1 == w0 2y = R] 5 04.1)
g, = gli) = 0 oh 8, F [y =2, 0 ¢ x < wl (4.2)
s R ey B R E NS Tk A
U =0, Sy 0onS; = [x=0,0c<yc<2], (4.3)
o, =0 o =H0nonns,y = iy = 0y 0 < x < a(i)] (4.4)
y : Xy R e T M
u = 0 o = Q0 on S = [y =0 a(i)< x < wl. (4.95)
y / Xy 5 ° ' e AN

In other words, the boundary conditions associated with the

process from State 1 to State 2 can be expressed as (cf. Fig. §5):




NNy SR s : :
dox = klo o |, Soxy 0 on bl : (4.6)
s0, = ol?). o, 65 =0ens,, (4.7)
su. =0, 6°xy =0 on S; , (4.8)

§o =0 So & gon T, & [¥ ™0, § < x < 3(1)] (4.9)
y - Ei T A » (4.
- 1
Soy B oy : Goxy =0 onT, = ly = 0, a(‘)fxfa(z)], (4.10)
su, =0, 8o, =0onTy = [y=0, al®cxew] (4.11)
)' ’ XY 3 Y ’ e s ’ .

where EY is the stress of State 1 distributed along y = 0
a(l)g X < a(Z).

between
If we have the solutions of Statc 1, then, for any given
adjacent state specified by 0(2) and a (2), the boundary con-
ditions for the transition from Statc 1 to State 2 arc well de-
fined in cqns. (4.6-4.11). The cquations of equilibrium and
the strain-displacement relations in the incremental form can

be written as:

.. = =20

ii,i ’ (4.12)

‘ =3.‘ {
6€ . - 2(6ui,j + éuj,i) : (4.13)

Lqns. (4.0-4.13) with eqn. (2.8) and/or cqn. (2.9) mathematically
define the crack growth problem as a boundary value problem.
After the boundary value problem is solved, the stresses,

strains, and displaccments at State 2 may be obtained as




og-%) = 0%}) + 601) > (4-14)

12} _ {1}
€53 ™ %ij + Gcij . (4.15)
ul®) - ull) + su, . (4.16)

tollowing the same procedure, onc may analyze stepwise the
whole process of slow crack growth up to the onset of fast

crack propagation.

3
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5. Finite Llement Proccdure

Let a finitc clement mesh with Np nodal points and NC
triangular clements be sct up in region R = [x,y|0 < w, 0 <y < 2].
In this work, Np = 300, Ne = 518, and a secries of very fine
elements are being distributed along the path of slow crack

6w£.

growth. The arca of thosc clements is in the order of 10
If j is thc number of a certain nodal point, then U351 and usj

arc the displaccement of that point in x and y direction respec-
tively, [2j-1 and £2j arc the corrcesponding external concentrated
force components acting on that point. The displacement field
within cach triangular clement is assumed to be linear with

respect to the coordinates. Thercfore the strain field, and accord-
ingly the stress ficld, within cach triangular element arc constant.

For cach element (cf. Fig. 6), let the incremental strain field

[8e], incremental stress field ([8o], and incremental nodal point

displacements (8] be represcented by

T
[6e] = [écx, ch, 6ny] . (5.1
T
[60]) = [éox, Goy, Goxy] 5 (5.2)
- : T
[8§]) = [6u2i_l,6u2i,éuzj_l,éuzj,Suzk_l,ouZR] . {533
Then we have
[6e] = [B][S§]) , (5.4)
[60] = [d][6€] ,
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where [d] is a 3 x 3 matrix as indicated in eqns. (2.11) and (2.12)

which are valid for loading and unloading respectively, and

by 0 bj 0 by 0
Lid . v
[B] = 3 0 Cy 0 Cj 0 Ck ~ (5.5}
< b1 Cj bJ Cx bk
T R
24 = det 1 X . Y. . (5.6)
J J
1 Xy Yk
b.1 = ¥5.7 ¥g = % z - Xy * X s (5.7)
with the other coefficients obtained by a cyclic permutation

of subscripts in the order of i, j, k. The stiffness matrix
per unit thickness of this triangular element linking incre-
mental forces and incremental displacements may be obtained as
[15,16) . i
T
(k] = (B] [d][B] A, (5.8)
where A is the arca of the element. Finally the governing

cquation can be written as:

2N

=

Kog Sug = 8£, , &= 14250000nse 2N, (5.9)

™
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where the 2Np X ZNp stiffness matrix [K] is equal to the sum of
Nc local stiffness matrices [k]l, [ = 1,.....Ne

As matrix [d] of cach clement depends on the current stresses ;
when that element is in a loading situation, the matrix (K] also
depends on the whole stress field. Thus, an iteration process
has to be taken to solve the nonlincar matrix equation (5.9). The
iteration process could be described as follows. Suppose, in a step
by step process, we have the solutions of State 1, (i.e., for each ele-
ment we have the current stresses o.lj and the maximum cffective

~

Stress ug). Then, for cach clement, we gucss at the stresses oij of
State 2. Then the current cffective stress Oq and the effective

A

stress o, maybe obtaincd respectively from

L 2 ) 2
a, = (ox + Oy oxoy + Scxy) . (5.10)
~ AZ I\Z A A AZ !‘ﬁ
e, * (Ux + oy - Uxoy + Soxy) . (5.11)

The corresponding matrix [d] for each clement may be found from one

of the thrce following cases:

l d
(8} o mn >

v

For casc (1), the element is in a loading situation; matrix [d] 1is

assumed to be the average matrix corresponding to two states of

stresses, i.e.,

(0) + dj5(@)] - (5.12)




= 1(, =
‘-
For casc (2), the element is in an unloading situa%ion; matrix

[d] should be the same as indicated in eqn. (2.12).

-~ *
€3] o '< g and 0. > @
¢ C ¢ ¢
For casc (3), the clement has experienced unloading and is being ®

loaded again, the matrix [d] 1is obtained as
1 ’ L

dij = £di5(0) + (1-6) d;500) (5.13)

where

S

£8 (g = og)/(;e S (5.14)

¢ (&

and diJ(Q} denotes the matrix corresponding to vanishing
stress state.

After solving eqn. (5.9), one may obtain the calculated 5
stresses aij and its corresponding effective stress Ec . The
iteration process will be continued until, for each element,
the guessed stresses and calculated stresses are approximately the
same and the averaged percentage difference between Sc and
50 is below certain allowable values of error. After the itera- :
tion process is completed, it is straightforward to calculate

quantities of interest in fracturc mechanics.
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0. Dissipated knergy and Crack Growth

The irreversible and dissipative nature of plastic strain
energy density have been indicated in Sec. 3. After the iteration
process for a certain incremental step is completed, we have the
corrcctly gucssed stresses ;ij and the corresponding effective
stress Gc of a new state for each finite element. If the newly
obtained effective stress is larger than the maximum effective
stress o: obtained in the previous statcs, one should replace
o: by ;c , which will bec uscd as the maximum effective stress

for the next incremental step. Now we recall the expressions for

clastic and plastic strain cnergy density as follows:

~2 2

0o = BF2 o) ¢ LRG0T (6.1)
y n+l

W W s %

“p h(n*l)auc : (6.2)

We notice that ¢c depends on the current stresses and therefore
demonstrates its clastic nature. On the other hand, ®p is a
monotonically incrcasing quantity because o: is always increasing,
this corresponds to the irreversibility of plasticity and

the dissipative naturce of plastic energy. After the finite
clement analysis for cach incremental step is completed, it is
straightforward to obtain the total plastic cnergy P (per unit

thickness) for the whole region R as follows:




p=Z (6,A); - (6.3)

i=1

For a stationary crack problem, the crack size is regarded
as a given quantity and hence the question is to determine the
critical load at the onset of slow crack growth. However, as
the crack starts to grow in a stable situation, one has to
treat crack size as a variable. Strictly speaking, one more
variable corresponds to one more governing equation for the
system. Before one can establish a governing equation for
crack size, the relation between crack size and other fracture
parameter has to be proposed and tested [12,13]. Motivated by
the Griffith's concept (17,18] that surface energy is propor-
tional to its area, and the energy for the new fracture surface
has to be supplied from the released strain energy of the speci-
men, we decided to take the energy approach. Since crack growth
is generally regarded as a irreversible process and crack size
1s an cver increasing quantity, we propose that crack growth

is a function of plastic energy, i.e.,

8 - Ny * £(P) . (6.4)

We mention that Broberg (19] proposed a similar concept which
can be expressed as:
dUU/da = dDO/da " (6.5)

where UO is the energy flow to the process region and D0 is

the energy dissipation in the process region. However Broberg's
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engincering approach is based on the so called approximate

path-independence of J-integral even in the cases of crack
growth.

After we analyze a realistic crack growth problem with all
the input data obtaincd cxpcrimcntally, we observe the following
fact:

a -a,-= B(P-PO) (6.5)

which means the amount of crack growth is linearly proportional

to the increment of plastic cnergy. The normalized plastic

2
cnergy per unit thickness p = PE/o§w2 is plotted against normalized

crack size ¢ = a/w in Fig. 7. The correlation coefficient

attains a high value of 0.9997. [Lqn. (6.5) may be rewritten as

%

n

P + (a-ao)/B

0
(6.6)

w) —

(pu- ao/B) G
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7. Fracture Toughness

Liebowitz and Eftis [7,8] developed a nonlinear energy
method to evaluate the toughness paramcter GC from a single
load-displacement record for cases of no crack growth. The
method may be bricfly described as follows. First, let the

experiment load-displacement record be represented by

5 EP

yEgt k(ﬁ) , {7:1)

where v is the load point displacement, F is the load, 1/M is
the crack size dependent elastic compliance, n and k are constants.
Then for a given critical load FC, one may obtain a dimensionless

quantity C representing the nonlinearity as follows:

P n-1
an\(N_L_ (7.2)

G, = & (7.3)
where Cc is the corresponding linear elastic fracture toughness and
may be obtained by using Irwin's G-K relation, 1i.e.,

* o 378
G. ’= KS/E . (7.4)

And KC is determined using the following polynomial expression
for center-cracked specimen [20]

2
Ko=o i (1-012+ &) . (7.5)

W

Jones et al [11] further developed four different methods to

account for the effect of subcritical crack growth. We briefly
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describe these four methods and in cuach method we compare the
experimental value of G, with thce numerical value of Gc obtained

by finite-clement analysis.
Mcthod 1

The experimental part of this method can be separated into g
two steps: (1) to determine C from the cxperimental load dis-
placement record,(2) to calculate UC by eqns. (7.4-7.5) using
actual critical stress g, and initial crack size. For illus- |
trative purpose, we take specimen #11 (2024-T3) as an example

and the data for that specimen are listed below:

2w = 12 in. ,

Zuo = 6 in.,

2% = 572 da.,

E = L0300 - ksi, (7.6)
v = 0.33 ,

Oy = 55.04 ksi

fJ.UY = Z2.207 w

And load-crack size relation is plotted in Fig. 3, which is
taken as an input in this work. As an output the numerical
data for load-displacement curve obtained by finite element
analysis are plotted in Fig. 8 to compare with the experimental

curve. In this particular casc we have
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E:C (Exp) = 521 1b/in., G. (FE) = 473 Ib/in. (7.7)

The difference is about 10%; 2% comes from the calculation of
UC due to fact that eqn.(7.5) always gives higher value for KC,
and hence higher value for CC from eqn. (7.4) and 8% comes

from the calculation of C due to the discrepancy between

finite-element and experimental data in the load-displacement record.

Mcthod 2

The experimental part of this method involves the deter-
mination of a hypothetical load-displacement curve assuming

there is no crack growth. Eftis et al. [12] propose that

F = e M(aO)/M(aC) (7.8)

being used as the critical load corresponding to the hypo- f
thetical load-displacement curve. Lee and Liebowitz [22] de-
veloped a computer program which can be used to analyze a
center-cracked specimen in the nonlinear range without crack
growth, and therefore it is straightforward to find F assuming

critical displacement V. to be the same as obtained experiment-

ally. We find that

G. (FE)

]
(@14

(FE) G_ (FE)
2

=1, 13545 % 381,77 (L4,01/12.8)

(2]

= 518 1b/in. (7.9)

No experimental value for Cc has been reported by Jones et al

[11].




thhod 2

The experimental part of this method involves the deter-

mination of MO’ ngo kn, and C accordingly, from the portion of
load-displacement curve, which has no crack growth, and the

value of T from the following cquation

n 0

o ;
e "W, " Mo fehn

The experimental value of CC is reported to be 520 1b/in. and
the finitc-element value of (;C is found to be 519.7 1b/in.
Mcthod 4

Utilizing ko and n, obtained in Method 3, we recall eqn.

(7.1) and write as follows

P g o
Ve it Roly) o =
L <
which is uscd to determine Mc = M(ac) . The experimental

part of this method is to determine C. based upon Mc’ nys kO,
FC, and u(, based upon critical crack size a.. The experimental
valuc of GC is reported to be 581 1b/in. However, we found

that CC (FE) = 491.6 1lb/in., which we believe 1is more reliablc.

In summary, the finitc-clement values of CC for four different

methods are 473, 518, 519.7 491.0 comparing with experimental

values 52k, - , 520, 581 Tespectively.




8. Conclusions

In this work, we focused our attention on the finite ele-
ment analysis of crack growth in a center-cracked specimen
subjccted to monotonically increasing loads until fast fracture
occurs. During the process of crack extension, although the
applied load is increased monotonically, part of the specimen
has experienced unloading. Therefore, in this work the boundary
value problem formulated is based upon incremental theory of
plasticity.

Since, in a crack growth problem, crack size is no longer
a given constant parameter and must be treated as a variable, a
governing equation for crack size is needed. Before we can
formulate such a governing equation, an experimental curve
relating load and crack size is taken as an input and hopefully
from the output one may find the relation between crack size
and other fracture parameters derivable from the stress fieid.
Because of the irreversible and dissipative nature of plasticity
and crack growth, we believe that crack size should be related
to plastic energy. Indeed, after the completion of the analysis,
we do observe the fact that the amount of crack growth is
linearly proportional to the increment of plastic energy. In
another study of ours which is in progress, the linear relation,
will be employed as an input replacing the experimental load-
crack size curve. If the result yields a load-crack size

curve which 1s in agreement with the corresponding experi-
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mental, arce then once may claim a governing equation for crack
size.

Another aspect which is of concern is the fracture tough-
ness parameter U( . Licbowitz and his coworkers [8-10] developed
a nonlincar cnergy method and its corresponding experimental
procedurc for the determination of U( at the onset of stable
crack growth. Recently Jones et al [11] presented four dif-
ferent cmpirical methods to account for the effect of subcritical
crack growth. These methods cnable us to determine the fracture
toughness parameter Uc at the onset of unstable crack propa-
gation bascd upon the experimental load-displacement record.

Then the finite-element values which were determined for Cc were
comparcd to the corresponding experimental values; satisfactory
agreement was lound.

The tollowing points should be stressed. Inputs fox the
computer program include the material constants a and n, in addi-
tion to Younp's modulus I and Poisson's ratio v, determined from

the simple tension test of unnotched specimen. However, as a
matter of fact, o« and n vary over a wide range when one tries to
describe the experimental stress-strain curve by a three parameter
expression and, from our experience, the finite element computer
program is quite sensitive to the input a and n. We believe this
is the major rcason for the existing discrepancy between the experi-
mental load-displacement curve and its finite-element counter-

part, which has a 5.2% differencc in displacement at the critical




load. Although there is a discrepancy, we find that the finite-
element valuces of ﬁc bascd on the empirical methods have less
scatter than the cexperimental counterparts. Generally speaking,
this work provides support to the nonlinear energy method de-
veloped by Licbowitz and Lftis [7}, Lftis and Liebowitz {8] and
its corresponding experimental procedures Jones et al [9],
Lichowitz et al [10] and Jones et al [11], in determining the

fracturc toughness values in the range of stable crack growth.
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